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Sangeeta Biswas, Johan Rohdin, and Koichi Shinoda

Department of Computer Science
Tokyo Institute of Technology, Japan

Abstract

Recently, systems combining i-vector and probabilistic lin-
ear discriminant analysis (PLDA) have become one of the state-
of-the-art methods in text-independent speaker verification. The
training data of a PLDA model is often collected from a large,
diverse population. However, including irrelevant or noisy train-
ing data may deteriorate the verification performance. In this
paper, we first show that data selection using k-NN improves
the speaker verification performance. We then present a robust
way of selecting k based on the local distance-based outlier
factor (LDOF). We call this method flexible k-NN ( f k-NN).
We conduct experiments on male and female trials of several
telephone conditions of the NIST 2006, 2008, 2010 and 2012
Speaker Recognition Evaluations (SRE). By using f k-NN, we
discard a substantial amount of irrelevant or noisy training data
without depending on tuning k, and achieve significant perfor-
mance improvements on the NIST SRE sets.

1. Introduction

Data selection is an important issue in speaker recognition.
In previous studies, data selection for the impostor models in T-
normalisation (Sturim & Reynolds, 2005; McLaren et al., 2009),
for the background dataset of support vector machines (SVM)
(McLaren et al., 2010; Suh et al., 2011), or for a universal back-
ground model (UBM) (Hasan et al., 2010; Hasan & Hansen,
2011; Huang & Ma, 2011) were addressed. It was shown that
data relevancy is more important for the verification perfor-
mance than data size. In this paper, we address the relevant
data selection issue for probabilistic linear discriminant anal-
ysis (PLDA) (Ioffe, 2006; Prince & Elder, 2007) modelling in
i-vector based text-independent speaker verification.

An i-vector system maps an utterance into a low dimen-
sional subspace, known as the total variability subspace (De-
hak et al., 2009, 2011). The coordinate vector in the total vari-
ability subspace is known as an i-vector. An i-vector contains
information related to an speaker identity, as well as irrelevant
factors such as the transmission channels or the speaker’s emo-
tion. Currently, PLDA is one of the state-of-the-art methods
for separating the speaker identity from irrelevant factors and
generating a likelihood-ratio score for two given i-vectors.

In order to train the parameters of a PLDA model, multi-
session recordings from several hundred speakers, resulting in
several thousands of recordings from multiple databases, are
typically used. For example, research groups involved in the

NIST speaker recognition evaluation (SRE) typically use utter-
ances from all NIST 2004-2005 data along with the Switch-
board II, Phases 1, 2 and 3; Switchboard Cellular, Parts 1 and 2
data, and Fisher data. However, there is no evidence that using
all the available data would guarantee the best PLDA model.

Based on the experiences from the other models such as
UBM, SVM or joint factor analysis (JFA), researchers typi-
cally use gender-dependent PLDA models. Senoussaoui et al.
(2011) empirically showed that gender-dependent PLDA mod-
els outperformed gender-independent PLDA models. Kanaga-
sundaram et al. (2012) showed that the PLDA model trained by
utterances whose lengths matched with those utterances in the
evaluation set performed better than that trained by full-length
utterances. These studies indicate that in order to get better per-
formance from a PLDA model, it is necessary to ensure that the
training data of the PLDA model matches the properties of the
target evaluation set. However, it is not always obvious which
properties are important to be matched. Therefore, in Biswas
et al. (2014), a data-driven approach was adopted. This paper is
an extended version of Biswas et al. (2014).

In many applications such as on-line bank services for reg-
istered customers, we can access the set of speakers enrolled to
the system, i.e., enrolment set, during the development phase of
the system. Targeting such applications, we proposed to use the
enrolment set for selecting suitable training data for the PLDA
model in Biswas et al. (2014). We showed that by selecting
a training set whose i-vectors are close to the i-vectors of the
enrolment set, the PLDA modelling can be improved. We first
used the k-NN method in order to choose the k-nearest neigh-
bours of each enrolment speaker in the training set of the PLDA
model. We showed that this method performs remarkably well
when the optimal k is known. However, it is difficult to estimate
the optimal k. We, therefore, proposed a robust way of select-
ing k based on the local distance-based outlier factor (LDOF)
(Zhang et al., 2009). We named our method flexible k-NN ( f k-
NN).

In Biswas et al. (2014), we conducted experiments using
data without any noise for the PLDA modelling. In our exper-
iments, we used the same k for all enrolment speakers in order
to avoid complexities. In this paper, we deal with more realistic
scenarios, where the training set of the PLDA model and the
authentication set1 are noisy. We also discuss how to use the
enrolment speaker dependent k instead of using the same k for
all enrolment speakers in f k-NN. The effect of i-vector selec-

1A set of test segments
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tion on known and unknown non-target trials, is also a topic of
this paper.

We evaluate the data selection methods on the NIST SRE
2006 core task, the NIST SRE 2008 core task (condition-6), the
NIST SRE 2010 extended core task (condition-5), and the tele-
phone conditions of the NIST SRE 2012 core task (condition-2,
-4 and -5). All these evaluation sets have only telephone data
in the authentication sets. Note that using the knowledge of the
enrolment set for system development is allowed in the NIST
SRE 2012 but not in the earlier NIST SREs. Our experiments
show that f k-NN can obtain significant performance improve-
ments on both male and female trials by discarding a substantial
amount of irrelevant or noisy training data of the PLDA model.

Since the training time of the PLDA model is very short
(several seconds), f k-NN does not offer a large reduction in
computational expense as some data selection methods for UBM
training (Hasan & Hansen, 2011) do. However, it improves the
verification accuracy. Thanks to the short training time, we can
re-train the PLDA model quickly after adding relevant data for
newly added enrolment speakers, which would not be practi-
cal for UBM training or other offline modelling such as factor
loading matrix (e.g., total variability matrix) training.

The organisation of this paper is as follows: Section 2 intro-
duces the i-vector based speaker verification system, Section 3
describes PLDA modelling for i-vectors, Section 4 presents our
data selection methods, and Section 5 experimentally evaluates
the effect of selecting i-vectors for PLDA modelling. Finally,
Section 6 draws conclusions of this paper.

2. i-Vector based speaker verification

An i-vector based system (Dehak et al., 2009, 2011) as-
sumes that the feature vectors of an utterance are drawn inde-
pendently from a Gaussian mixture model (GMM). The stacked
mean vectors of the GMM constitute a speaker- and channel-
dependent GMM-supervector, µ. It is assumed that µ is gener-
ated according to

µ = µ̄ + Tφ, (1)

where µ̄ is the mean of speaker- and channel-independent su-
pervectors, T is a basis for the total variability subspace, and
φ is a random vector. It is assumed that φ follows the standard
normal distribution and its dimension is lower than that of µ̄.

Given the features from an utterance, the i-vector, ω, is the
maximum a posteriori (MAP) estimate of φ. The mathematical
framework for training T and estimating φ is the same as used
for training the eigenvoice matrix, V, and estimating the hidden
variable, y, in the eigenvoice MAP (Kenny et al., 2005). The
only difference is that, in the eigenvoice MAP, y is the same for
all utterances of the same speaker, whereas in an i-vector based
system, φ is different from utterance to utterance.

An i-vector contains information not only about the speaker
identity but also to a large extent about other factors such as the
speaker’s emotions, transmission channels, languages, and en-
vironmental noises. These other factors in all can be referred
to as channel factors and should ideally be removed before
verification. Three popular channel compensation techniques,

namely within class covariance normalisation (WCCN) (Hatch
et al., 2006), linear discriminate analysis (LDA), and nuisance
attribute projection (NAP) (Campbell et al., 2006), were used
to remove the effect of channel factors from the i-vectors in De-
hak et al. (2011). The low dimension of the i-vector inspired
researchers to use more advanced methods. Currently, PLDA
introduced in Kenny (2010) has became one of the state-of-the-
art methods for removing channel effects from i-vectors in text-
independent speaker verification.

3. PLDA modelling

PLDA was originally proposed for object recognition in im-
age processing independently by Ioffe (2006) and Prince & El-
der (2007). Prince & Elder (2007) assumed that the feature
vector, g, is generated as:

g = m + Vy + Ux + ε, (2)

where m is the mean of g, and y and x are random vectors de-
pendent on the class and channel factors, respectively. The vec-
tor ε also depends on the channel factors and follows N(0,Σ),
where Σ is a diagonal covariance matrix. The vectors y and x
follow the standard normal distribution. The matrix V is a basis
for the between-class subspace and the matrix U is a basis for
the within-class subspace. This PLDA model is very similar
to the joint factor analysis (JFA) model (Kenny, 2005; Kenny
et al., 2007) proposed for speaker recognition using the GMM-
supervector, µ. The difference is that in the PLDA model, g is
observed whereas in JFA, µ is indirectly observed, i.e., we ob-
serve features drawn from the GMM but we do not know the
parameters of µ.

Kenny introduced PLDA as in Eq. (2) for speaker verifi-
cation with i-vectors as features in Kenny (2010). The author
suggested to skip Ux but instead use full covariance Σ when
large amounts of data are available, i.e.,

ω = m + Vy + ε. (3)

Using a full covariance matrix, Σ, is possible since the dimen-
sion of the i-vector is low. The PLDA model in Eq. (3) is similar
to the two-covariance model proposed by Brümmer & Villiers
(2010) and to the PLDA model proposed by Ioffe (2006). The
rank of V is lower than the dimension of the feature vector in
Ioffe (2006); Kenny (2010). On the other hand, in Brümmer &
Villiers (2010), the rank of V is equal to the dimension of the
feature vector, which means that the between-class covariance
VVT has a full rank.

Given the two i-vectors, ωi and ω j involved in a trial, the
verification score, si j, is computed as:

si j = log
p(ωi,ω j|Hs)
p(ωi,ω j|Hd)

, (4)

whereHs andHd are the following two hypotheses
Hs: ωi and ω j belong to the same speaker
Hd: ωi and ω j belong to two different speakers
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When m = 0, the closed-form solution of Eq. (4) is

si j = 2ωT
i Pω j + ωT

i Qωi + ωT
j Qω j + c, (5)

where c is a constant, and

P = Σ−1
a Σb − (Σa − ΣbΣ

−1
a Σb)−1, (6)

Q = Σ−1
a − (Σa − ΣbΣ

−1
a Σb)−1, (7)

where Σa = VVT + Σ, and Σb = VVT [see Garcia-Romero &
Espy-Wilson (2011)].

Typically, V and Σ are estimated by maximising the likeli-
hood (ML) of the training data by means of an EM algorithm
(Prince & Elder, 2007). It has been shown in Garcia-Romero &
Espy-Wilson (2011) that it is better to apply whitening followed
by length normalisation to the i-vectors before estimating the
parameters of the PLDA model in order to make the i-vectors
more closely follow a Gaussian distribution.

4. i-Vector selection

4.1. Overview
Let the sets of i-vectors, ω, for the PLDA modelling, for

enrolment speakers, and for authentication be P, E, and A, re-
spectively. In order to train a good PLDA model, two condi-
tions need to be fulfilled. First, P should be plentiful. Multi-
session recordings from several hundred speakers, resulting in
several thousands of recordings are typically needed. Second,
P should be relevant; P should have similar properties to E and
A. There is a trade-off between these two conditions. Gender-
dependentP is one good compromise for this trade-off. Senous-
saoui et al. (2011) empirically showed that a gender-dependent
PLDA model outperformed a gender-independent one. Obvi-
ously, a speaker’s acoustic properties depend not only on gender
but also on the physical properties of the vocal tract, dialect, age
etc. In addition, phone sets, transmission channel types or back-
ground noises are known to greatly affect the acoustic proper-
ties of a recording. Kanagasundaram et al. (2012) showed that
when ωp ∈ P were extracted from utterances whose lengths
matched with utterances used for ωe ∈ E and ωa ∈ A, an
improvement was achieved over the PLDA model trained by
ωp ∈ P extracted from full-length utterances. It seems there-
fore natural to select the training data based on more properties
than gender. Since we do not know what other properties are
important to consider, in this paper we adopt a data-driven ap-
proach.

In our approach, we target the application where we can ac-
cess E during the development phase of the system. Given E,
we try to find a training set, S ⊂ P, that has similar properties
to E. In general, i-vectors having similar properties are close to
each other. One scenario is visualised in Fig. 1 where micro-
phone and telephone recordings are clearly separated2. We can
safely assume that the set of ωp ∈ P that has smaller distance
from the set of ωe ∈ E, can be our desired S.

2In our experiments, we are aiming at findingS among telephone recordings
only.

 

 
(a) Male 
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Figure 1: Clusters formed by i-vectors extracted from phone- and microphone-
utterances after principal component analysis (PCA). x-axis is for the first prin-
cipal component and y-axis is for the second principal component. Black circles
represent i-vectors extracted from the phone-utterances and blue dots represent
i-vectors extracted from the microphone-utterances. (a) There are 1270 male i-
vectors. Among them 648 are from the phone-utterances and 622 are from the
microphone-utterances. (b) There are 1993 female i-vectors. Among them 1140
are from the phone-utterances and 853 are from the microphone-utterances.

In this study, we apply k-nearest neighbour (k-NN) in order
to find S. We show that this method performs remarkably well
when the optimum k is known. However, it is difficult to esti-
mate the optimum k. The optimum k may vary between differ-
ent E. We, therefore, present a robust way of selecting k based
on the local distance-based outlier factor (LDOF) (Zhang et al.,
2009).

4.2. k-NN

Let Sk
e ⊂ P be the set of the k-nearest neighbours of an

enrolment i-vector, ωe. The steps of our data selection process
using k-NN are given as:

1. Set the value of k.
2. For each ωe ∈ E, find Sk

e.

(a) Estimate the distance from ωe to each ωp ∈ P, i.e.,
dist(ωe, ωp).

(b) Sort dist(ωe,ωp) in ascending order.
(c) Put the k-nearest neighbours of ωe from the set of

ωp ∈ P into Sk
e.

3. Take the unique set of i-vectors from {Sk
e}∀e to get S.

We can choose the value of k from a range of values for
which we can get the best verification accuracy on a develop-
ment set. However, selecting the optimal value of k based on
the verification accuracy, to some extent depends on the range
of k’s values and the step-size. If we choose small range and
large step-size, we would not get the optimum value. On the
other hand, a large range and a small step size cause a computa-
tionally expensive k optimisation process. The second problem
is that k may vary from database to database. Therefore, one k
does not guarantee good result in all evaluation sets. Further-
more, the size and the spreadness of E compared to the spread-
ness of P may affect the number of selected i-vectors. If the
i-vectors in E are close to each other compared to the typical
distance between the i-vectors in P, then every ωe ∈ E will se-
lect almost the same ωp ∈ P. In such case, if the size of E is
very small, we need a large k in order to get a sufficient amount
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of i-vectors for training a good PLDA model. On the other
hand, if the size of E is large, then a large k may select unnec-
essary data. Therefore, if we use a k optimised for a different
E, we may not get a sufficient amount of i-vectors for training
a good PLDA model, or we may end up covering almost the
whole training set, P. Another more complicated problem is
that the i-vectors in Sk

e might be much closer to each other than
they are to ωe ∈ E. In this case, the i-vectors in Sk

e form a clus-
ter, and ωe becomes its outlier. In such a case, Sk

e cannot be
expected to improve modelling of the region surrounding ωe.

In order to solve these problems, we have proposed a mod-
ification of the k-NN method, which we have named flexible k-
NN ( f k-NN) (Biswas et al., 2014). In this method, we first use
the LDOF defined in the next section to measure to what extent
ωe deviates from the cluster made by Sk

e. We then increase k
until all ωe ∈ E lie inside the cloud of nearest neighbours ac-
cording to the LDOF criteria. Our proposed f k-NN helps to
decide k based on the nature of the target E, not on any devel-
opment set.

4.3. Flexible k-NN ( f k-NN)

4.3.1. LDOF
In data mining applications, LDOF proposed by Zhang et al.

(2009) is used for capturing the outlierness of an object among
a scattered neighbourhood. In this paper, we use it to control
the value of k in the k-NN based data selection process. The
LDOF of ωe given k is defined as

LDOFk
e =

dk
e

Dk
e
, (8)

where dk
e is the k-NN distance of ωe and Dk

e is the k-NN inner
distance of ωe’s neighbourhood, which are defined as:

dk
e =

1
k

∑
ωi∈S

k
e

dist(ωe,ωi), (9)

Dk
e =

1
k(k − 1)

∑
ωi,ω j∈S

k
e ,i, j

dist(ωi,ω j). (10)

As shown in Fig. 2, LDOF captures the degree to which ωe

deviates from its neighbourhood Sk
e. When LDOFk

e ≤ 1, we
can say that ωe is surrounded by the cloud created by the i-
vectors of Sk

e. Notice that if k = 1, Dk
e is undefined, therefore,

LDOF cannot be calculated.

4.3.2. Algorithm of f k-NN
The most naive way of applying LDOF for determining k

in k-NN is to select an individual value of k, ke, for each ωe, as
the minimum from among those k’s which suffice LDOFk

e ≤ 1.
However, LDOF is not robustly estimated for values of k much
smaller than the dimension of the data. In order to use LDOF
in a cautious way, we therefore first find the minimum k which
suffice LDOFk

e ≤ 1 for all ωe. We then use this k for all ωe.
We call this method f k-NN (Biswas et al., 2014). The f k-NN
algorithm is as follows:

Figure 2: The outlierness of a synthetic two-dimensional i-vector,ωe ∈ E, with
respect to its six neighbours, ωp ∈ P, according to the LDOF criteria. Here red
star: ωe ∈ E, black dot: ωp ∈ P, green triangle: centre of six ωp ∈ P. Among
nine ωp, three are on the boundary lines.

1. Set the LDOF threshold, θ, so that 0 < θ ≤ 1.
2. Set k = 2.
3. For each ωe ∈ E,

(a) Find Sk
e.

(b) Estimate LDOFk
e.

4. If any LDOFk
e ≥ θ, then

(a) k = k + 1.
(b) Go to Step-3

5. Take the unique set of i-vectors from {Sk
e}∀e to get S.

In order to avoid an extra parameter to tune, we set θ = 1 in
our experiments. Fig. 3 shows how the LDOF value is used to
decide the value of k in f k-NN for a synthetic two-dimensional
enrolment i-vector, ωe.

4.4. k/ f k-NN variants

4.4.1. Individual k-NN (ik-NN)
As mentioned in Subsubsection 4.3.2, it is difficult to es-

timate an individual k for each ωe using LDOF. Here, we pro-
pose a variant of f k-NN using the difference between LDOFk

e’s.
Let ∆LDOFk

e be the absolute difference between LDOFk
e and

LDOFk−1
e , and γ be the threshold for ∆LDOFk

e. Then, for each
ωe, we increase ke as long as LDOFk

e ≥ 1 and ∆LDOFk
e ≤ γ.

Here, we use absolute difference since we assume that the dif-
ferences converge to 0 as k increases without necessarily being
negative for all k. We refer to this method as individual k-NN
(ik-NN). The steps of ik-NN are given below:

1. For each ωe ∈ E,

(a) Set ke = 2.
(b) Find Sk

e.
(c) Estimate LDOFk

e.
(d) If LDOFk

e ≥ 1 and ∆LDOFk
e ≤ γ, then

i. ke = ke + 1.
ii. Go to Step-1b

2. Take the unique set of i-vectors from {Sk
e}∀e to get S.
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Figure 3: Estimation of k for a synthetic two-dimensional i-vector, ωe ∈ E, by using LDOF value. Here red star: ωe ∈ E, black dot: ωp ∈ P, green triangle: centre
of i-vectors in Sk

e .

4.4.2. Averaged enrolment i-vectors
In some cases such as in the NIST SRE12 data set, we

sometimes have several enrolment sessions for the same speaker.
For such cases, we propose an alternative strategy where at first
we average the enrolment i-vectors of each speaker. Then we
use the averaged i-vectors for data selection with k-NN or f k-
NN in the normal way. We denote the methods as a-k-NN and
a- f k-NN, respectively.

4.4.3. Adding all sessions from selected speakers
Having many sessions per speaker is important for reliable

estimation of both the speaker variability, V, and the channel
variability, Σ. Our data selection approaches (k-NN, f k-NN,
ik-NN) are, however, unlikely to select all sessions of each se-
lected speaker. We propose a variant of our data selection meth-
ods where we first apply k-NN, f k-NN or ik-NN, and then add
all discarded i-vectors from the speakers in S. We call this
method k-NN-s, f k-NN-s or ik-NN-s. Since adding more i-
vectors may lose the theoretical justification for f k-NN-s and
ik-NN-s, we focus on k-NN-s in this paper.

4.5. Issues related to data selection

4.5.1. Distance metric
The choice of the distance measure is an important issue

in both k-NN and f k-NN. Various measures can be used to
compute the distance between two i-vectors. From Fig. 1, we
can say that the Euclidean distance could be a good choice.
However, since we are using length-normalised i-vectors for
PLDA modelling, it would be inconsistent to use the Euclidean
distance without length normalisation in the i-vector selection
phase. Because, someωp ∈ P that are close to anωe ∈ E before
length-normalisation may not be close after length-normalisation.
Thus wrong i-vectors may be selected which will deteriorate
the performance of k-NN based system. Our preliminary ex-
periment using the Euclidean distance supported this fact. In
Fig. 4, the same i-vectors shown in Fig. 1, are shown after
length normalisation. As can be seen, there is an obvious direc-
tional separation between the i-vectors extracted from phone-
and microphone-utterances. Therefore, the cosine distance could
be a good choice. When the i-vectors are length-normalised, the
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Figure 4: Plot of the length-normalised i-vectors after applying a two di-
mensional PCA-projection. Black circles represent i-vectors extracted from
the phone-utterances and blue dots represent i-vectors extracted from the
microphone-utterances. (a) There are 1270 male i-vectors among them 648
are from the phone utterances and 622 are from the microphone utterances.
(b) There are 1993 female i-vectors among them 1140 are from the phone-
utterances and 853 are from the microphone-utterances.

relation between the two distance metrics is given by,

disteuc(ωi,ω j) =

√
2 × distcos(ωi,ω j), (11)

where disteuc(ωi,ω j) is the Euclidean distance and distcos(ωi,ω j)
is the cosine distance between any two i-vectors, ωi and ω j.
Since this function is monotonically rising, it does not make
any difference which of the two distance metrics we use when
i-vectors are length-normalised. In this study, we use the cosine
distance for both k-NN and f k-NN. A more detailed analysis of
distance metric will be a part of future work.

4.5.2. Domain adaptation
If we can use E for selecting relevant data from P, we can

also use E for domain adaptation. The most trivial domain
adaptation approach is to add i-vectors of E (i.e., the in-domain
data) to the PLDA training data (i.e., the out-domain data), and
re-train the model. Domain adaptation adjusts the model to be
more similar to E. Data selection improves the modelling in the
region close to E on the expense on regions far from E. Un-
less the enrolment set is very large, data selection and domain
adaptation can be expected to be complementary.

4.5.3. Unseen impostors
A possible concern with the idea of data selection based on

E is that this may reduce the performance for non-target trials
involving unknown impostors, i.e., impostors who are not in E.
The reason for this concern is that by selecting training data
close to E, the modelling of impostors in regions far away from
E may deteriorate. However, our assumption is that impostors
who are far away from E will not be confused with speakers
in E anyway. In order to verify that data selection does not
reduce the performance for non-target trials involving unknown
impostors, we experimentally compare the performance of data
selection when all the impostors are unknown and when all the
impostors are known, i.e., they are one of the speakers in E in
Subsubsection 5.4.6.

5. Experiments

5.1. Outline

We conducted experiments to examine the effect of data
set, S, selected by k-NN and f k-NN on the performance of the
PLDA model. We restricted our experiments to evaluation sets
having an authentication set,A, containing telephone data only.
We used the NIST SRE 2006 core task (SRE06) as development
set, in particular for tuning k in k-NN. We used three evaluation
sets, the NIST SRE 2008 core task condition-6 (SRE08), the
NIST SRE 2010 core task condition-5 (SRE10), and the NIST
SRE 2012 core task condition-2, -4 and -5 (SRE12). Among the
three sets, SRE12 has noisy authentication sets, As, whereas
the other two are considered to have cleanAs.

During the development of our baseline system, we found
that for PLDA training it was beneficial to exclude i-vectors ex-
tracted from utterances that were distorted by echo, or crosstalk,
or background noise based on meta-data. However, in reality
meta-data may not always be available. Therefore, we consid-
ered both a training set R, where these noisy i-vectors were in-
cluded, and training set, C, where they were excluded.

The details of our experimental setup are given in Subsec-
tion 5.2. The results of SRE06, SRE08 and SRE10 which have
clean As, are given in Subsubsection 5.3.1. The results of
SRE12 which has noisy As are given in Subsubsection 5.3.2.
Subsection 5.4 includes analysis of different issues regarding
the data selection schemes, as well as experiments with some
of their modifications and extensions described in Section 4.

5.2. Experimental set-up

5.2.1. Evaluation sets (E andA)
The development set, SRE06, and all the evaluation sets,

SRE08, SRE10 and SRE12, have an enrolment set, E, for train-
ing speaker-specific models, an authentication set, A, for test-
ing performance of speaker-specific models, and a set of tar-
get and non-target trials. Common factors among all evalua-
tion sets are thatA contains data extracted from only conversa-
tional telephone speech recorded over ordinary telephone chan-
nels and that E has data extracted from only clean speech files.

SRE06, SRE08 and SRE10 have only clean speech files in
A. In E, there are only one speech file for training a model
for each target speaker. Each speech file of E is from approxi-
mately five minutes of conversational telephone speech. Some
speakers in E have multiple model IDs. Therefore, the number
of speaker models, #M, is larger than the number of speakers,
#Es. SRE12 has noisy As. In SRE12(c5), all speech files of
A have intentionally been collected in a noisy environment. In
SRE12(c4), the files of A have added noise. SRE12(c2) in-
cludes all the trials of SRE12(c5) plus trials where A is clean.
In E, multi-session and multi-condition enrolment data are avail-
able for each target speaker3. There is only one model ID for
each speaker in E. Therefore, #M is equal to #Es.

3We used the enrolment file list that excludes repeated speech,
NIST SRE12 target speaker 2 single file per ldcid map.v2.txt.v2.1.txt.
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Table 1: Development set, SRE06 and evaluation sets, SRE08, SRE10 and
SRE12 for male and female speakers. #M: the number of models in the enrol-
ment set, E, #Es: the number of unique speakers in E, #Te: the number of test
files in the authentication set,A, #As: the number of unique speakers inA, and
#Us: the number of speakers ofA unseen in E.

Dataset Male
#M #Es #Te #As #Us

SRE06 349 257 1347 257 4
SRE08 648 492 858 427 105
SRE10 1906 187 384 192 20
SRE12(c2) 723 723 4962 - -
SRE12(c4) 723 723 3900 - -
SRE12(c5) 723 723 2156 - -
Dataset Female

#M #Es #Te #As #Us
SRE06 459 335 1679 327 5
SRE08 1140 844 1508 691 92
SRE10 2361 221 369 208 11
SRE12(c2) 1095 1095 7984 - -
SRE12(c4) 1095 1095 6195 - -
SRE12(c5) 1095 1095 3325 - -

Table 1 shows the number of files that we had in E and
A after discarding corrupted files. In E of SRE12, there were
8094 and 12393 files for training 723 and 1095 male and fe-
male speaker models, respectively. Since the PIN numbers were
missing for unknown test segments, #As and #Us for male and
female tasks of SRE12 could not be counted. Table 2 shows the
number of trials in the evaluation sets. For all sets, only a small
number of the non-target trials have impostors who are unseen
in E. In more realistic scenarios, the number of unseen impos-
tors might be higher. In SRE12, this is taken into account by a
re-balancing of the trials, as will be explained in Subsubsection
5.2.5.

Note that, using E for system development is allowed in
the NIST SRE plan for SRE12 but not for SRE06, SRE08 and
SRE10. Therefore, we violated the rules of SRE06, SRE08 and
SRE10.

5.2.2. Training data of UBM and T
For training UBM and T matrix, we used the NIST SRE

2004 (SRE04), NIST SRE 2005 (SRE05), Switchboard II Phase
1 (SB2P1), Switchboard II Phase 2 (SB2P2), Switchboard II
Phase 3 (SB2P3), Switchboard Cellular Part 1 (SBCP1) and
Switchboard Cellular Part 2 (SBCP2). From SRE04, we se-
lected speech files having single-channel conversation of ap-
proximately five minutes total duration. From SRE05, we se-
lected speech files having two-channel conversation of approx-
imately five minutes total duration. We used all non-empty
speech files of the Switchboard datasets.

The number of speech files, #F, and the number of speak-
ers, #S, used for training UBMs and T matrices are shown in
Table 3. MIXER PIN and PIN were used as unique speaker IDs
for NIST SRE and Switchboard datasets respectively. For the
files whose MIXER PIN or PIN were missing, model IDs were

Table 2: Trials of SRE06, SRE08, SRE10 and SRE12 for male and female
speakers. #T: the number of total trials, #Tr: the number of target trials, #Nt:
the number of non-target trials, #Kn: the number of non-target trials by known
speakers, #Un: the number of non-target trials by unknown speakers.

Dataset Male
#T #Tr #Nt #Kn #Un

SRE06 22123 1594 20529 20066 463
SRE08 12356 724 11632 9906 1726
SRE10 179338 3465 175873 158846 17027
SRE12(c2) 164549 2830 161719 131932 29787
SRE12(c4) 125400 2775 122625 122625 0
SRE12(c5) 62845 1534 61311 61311 0
Dataset Female

#T #Tr #Nt #Kn #Un
SRE06 28945 2022 26923 26478 445
SRE08 22957 1445 21512 20088 1424
SRE10 236781 3704 233077 221097 11980
SRE12(c2) 393042 4524 388518 313109 75409
SRE12(c4) 298491 4401 294090 289218 4872
SRE12(c5) 152976 2349 150627 148221 2406

Table 3: The number of speech files, #F, and the number of speakers, #S, used
for training gender-dependent UBM and T.

Dataset Male Female
#F #S #F #S

SB2P1 2558 292 3251 358
SB2P2 2352 304 2716 335
SB2P3 1612 290 2083 341
SBCP1 462 103 567 116
SBCP2 1310 165 2000 245
SRE04 1906 126 2651 188
SRE05 2705 245 3792 336
R 12905 1495 17060 1897

used as speaker IDs. For example, in SRE05, there were 198
male and 211 female speech segments without MIXER PIN.
We counted those speech segments as from 28 male and 29 fe-
male speakers based on their model IDs. However, multiple
model IDs may share the same MIXER PIN. Therefore, it is
possible that our counted #S was higher than the original #S.
There were 18 male and 23 female speakers appearing in mul-
tiple Switchboard datasets. Therefore, the number of speakers
in the combined set, R, was smaller than the total speakers of
individual sets. For male set, #S of R was 1495, whereas total
#S was 1525. For female set, #S of R was 1897, whereas total
#S was 1919.

5.2.3. Training datasets for PLDA model (R & C)
For training PLDA models, we prepared two sets of speech

files, R and C. In R, we included all speech files of P, i.e.,
the files used for training UBM and T matrices. For C, we se-
lected only the clean speech files of P. Clean speech refers
to speech which is not distorted by echo or crosstalk or back-
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Table 4: The number of speech files, #F, and the number of speakers, #S,
selected from clean speech for training gender-dependent PLDA models.

Dataset Male Female
#F #S #F #S

SB2P1 391 125 455 191
SB2P2 1868 283 2134 307
SB2P3 1399 277 1921 337
SBCP1 236 78 290 94
SBCP2 1038 157 1595 232
SRE04 1906 126 2651 188
SRE05 2705 245 3792 336
C 9543 1278 12838 1665

ground noise according to the meta-data of the databases. Ac-
cording to the documentation of the Switchboard corpora (Graff

et al., 1998), echo or crosstalk in the telephone circuit refers to
the audibility of the channel-1 speaker in channel-2 and vice-
versa. Background noise refers to the amount of sounds not
made by the speakers, e.g., baby crying, television, radio, etc.
For the NIST SRE databases, there is no meta-data for identify-
ing noisy speech, therefore we considered all speech of SRE04
and SRE05 as clean speech. The number of speakers, #S, and
the number of clean speech files, #F, of individual dataset and
of the combined dataset, C, are given in Table 4.

5.2.4. Pre-processing and training models
We at first extracted 15 PLP coefficients (Hermansky, 1990)

along with log-energy and then applied feature warping (Pele-
canos & Sridharan, 2001). After that we appended the first-
order and second-order derivatives, resulting in 48 elements per
frame. Then we removed non-speech parts from the feature
vector sequences by using spectral subtraction-based voice ac-
tivity detector (VAD) (Mak & Yu, 2010).

After extracting PLP features, we trained gender-dependent
systems. First, we trained gender-dependent UBMs with 2048
Gaussian components by using feature vectors of R. Then we
estimated sufficient statistics. Next we trained gender-dependent
T matrices by using sufficient statistics estimated by the feature
vectors extracted from R. The rank of T matrices, d, was tuned
to 400 by using SRE06. By using T matrices, we extracted i-
vectors of R. Then, we applied data selection and domain adap-
tation for selecting i-vectors for training PLDA models. Finally,
the i-vectors of PLDA models went through the process of cen-
tring, whitening, and length-normalisation (Garcia-Romero &
Espy-Wilson, 2011).

We trained gender-dependent PLDA models. The parame-
ters m, V and Σ of PLDA models were estimated by the ML
criteria. The rank of V was optimised to 250 by using SRE06.
Table 5 defines the symbols for referring to the data sets we
used in the experiments. Note that we will use the same sym-
bol for the training set and its corresponding PLDA model from
now on.

Table 5: Symbols that will be used for referring to PLDA models later in this
paper.

Symbol Training Data

R All available data
C Clean data selected by removing echo or

crosstalk or noise from R, i.e., {C ⊂ R}
{C/R}k S ⊂ {C/R} selected by k-NN
{C/R}fk S ⊂ {C/R} selected by f k-NN
Cik S ⊂ C selected by ik-NN
{C/R} + E Training data added with enrolment set
{C/R}k + E S ⊂ {C/R} selected by k-NN and added

with E
{C/R}fk + E S ⊂ {C/R} selected by f k-NN and added

with E

5.2.5. Performance measure
For SRE06, SRE08 and SRE10, we used equal error rate

(EER) and minimum detection cost, Cmin, as evaluation met-
rics. The EER indicates the number of errors when the decision
threshold is set so that the proportion of false acceptances (FA)
and the proportion of false rejections (FR) are equal. The Cmin

is the minimum value of normalised detection cost function,
CNorm, defined as:

CNorm = CDet/CDefault, (12)

where CDet is a weighted sum of FR and FA error probabili-
ties, and CDefault is the best cost that could be obtained either
by always accepting or always rejecting the segment speaker
as matching the target speaker, whichever gives the lower cost.
According to the NIST SRE plans for SRE06, SRE08 and SRE10
(NIST, 2006, 2008, 2010), CDefault and CDet can be defined as :

CDefault = min
{

CFR × PTarget,
CFA × (1 − PTarget)

}
, (13)

and

CDet =CFR × PFR|Target × PTarget

+ CFA × PFA|Nontarget × (1 − PTarget), (14)

where CFR and CFA are the relative costs of detection errors, and
PTarget is the a priori probability of the specified target speaker.
For SRE06 and SRE08, CFR = 10,CFA = 1 and PTarget = 0.01.
On the other hand, for SRE10, CFR = CFA = 1 and PTarget =

0.001.
For SRE12, we used an actual and a minimum version of

the primary evaluation metric, denoted by Cact and Cmin, re-
spectively, as evaluation metrics. The primary evaluation metric
of SRE12, CPrimary, is the average of two normalised detection
costs, C(1)

Norm and C(2)
Norm, given by

CPrimary =
C(1)

Norm + C(2)
Norm

2
, (15)
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where

C(i)
Norm =PFR|Target + β(i) × PKnown × PFA|KnownNontarget (16)

+ β(i) × (1 − PKnown) × PFA|UnknownNontarget,

where PKnown is the a priori probability that the non-target speaker
is one of the enrolled speakers, and

β(i) =
CFR

CFA
×

P(i)
Target

1 − P(i)
Target

; for i=1,2. (17)

For both C(1)
Norm and C(2)

Norm, CFR = CFA = 1. The prior proba-
bility for a target trial is P(1)

Target = 0.01 and P(2)
Target = 0.001 for

C(1)
Norm and C(2)

Norm, respectively.
We computed Cact by applying detection thresholds of log(β)

for the two values of β with β(1) = 99 and β(2) = 999 as recom-
mended in NIST SRE plan for SRE12. Cmin was the CPrimary

estimating by averaging the minimum versions of C(1)
Primary and

C(2)
Primary. When PKnown > 0, we used compound LLRs instead

of the original simple LLRs.4 In order for compound LLRs
to be effective, it is important that the simple LLRs are well-
calibrated. It is not sufficient to calibrate the compound LLRs
themselves. Therefore, to simply optimise the decision thresh-
old for the compound LLRs does not give the lowest cost that
could have been obtained with perfect calibration. For Cmin,
we, therefore, trained and applied a PAV transformation on the
evaluation scores. For Cact, we used an affine transformation
estimated using the Cllr loss shifted to PTarget = 10−2.5 (i.e., the
geometric average of P(1)

Target and P(2)
Target). We used SRE06 for

training the affine transformation. For calculating compound
LLRs, doing calibration and calculating the evaluation metrics,
we used the BOSARIS toolbox (Brümmer, 2012).

5.2.6. Tuning k
For the conventional k-NN, we optimised k by minimising

EER of the development set, SRE06. Using the cosine distance
as the distance metric, we chose the k-nearest neighbours from
C for each ωe ∈ E. We increased k from one up to fifty. When
k ≤ 2, PLDA training failed due to an insufficient amount of
training data. The optimum k was 37 for male and 25 for fe-
male trials of SRE06, respectively. We used the same k for the
training set, R.

5.3. Results
5.3.1. SRE06, SRE08 and SRE10

Table 6 compares EER and Cmin for the baseline, k-NN and
f k-NN. Data selection either by k-NN or by f k-NN improved
the verification accuracy. The k-NN method performed well on
the development set, SRE06, where k was optimised. On the
other hand, f k-NN was better than k-NN for reducing EER in
SRE08 and SRE10. Using f k-NN in C, we achieved on av-
erage 4.2% and 3.4% relative reduction in EER for male and

4See https://sites.google.com/site/bosaristoolkit/sre12 and the materials
therein for an explanation about compound vs. simple LLRs.

Table 6: EER and Cmin of SRE06, SRE08 and SRE10. For SRE06 and SRE08,
Cmin is in 10−2 whereas for SRE10, Cmin is in 10−4. For all tasks EER is in %.

Male SRE06 SRE08 SRE10
model EER Cmin EER Cmin EER Cmin

C 2.30 1.16 4.92 2.55 2.01 3.73
Ck 1.84 1.05 4.76 2.44 2.05 3.68
Cfk 2.08 1.12 4.73 2.43 1.92 3.53
R 2.59 1.33 5.07 2.65 2.14 3.97
Rk 2.08 1.13 4.87 2.58 2.11 3.94
Rfk 2.07 1.15 4.77 2.58 2.01 3.76
Female SRE06 SRE08 SRE10
model EER Cmin EER Cmin EER Cmin

C 3.42 1.85 5.97 2.85 3.02 4.94
Ck 2.71 1.43 5.81 2.82 2.93 4.74
Cfk 2.71 1.43 5.78 2.84 2.91 4.74
R 3.92 2.20 6.29 3.01 3.29 4.96
Rk 2.89 1.50 5.80 2.84 3.22 4.83
Rfk 2.89 1.50 5.79 2.84 3.16 4.81

female trials of the evaluation sets, SRE08 and SRE10, respec-
tively. Using f k-NN in R, we achieved on average 6.0% and
6.6% relative reduction in EER for male and female trials of the
evaluation sets, SRE08 and SRE10, respectively. Compared to
the clean set, C, we were more successful in reducing EER by
selecting i-vectors from R using f k-NN.

5.3.2. SRE12
SRE12 is different from the previous evaluation sets in that

several enrolment sessions are available for each speaker in E.
In our preliminary experiments, the methods using the averaged
i-vector methods, a-k-NN and a- f k-NN (4.4.2), were always
better than the methods using all available i-vectors per speaker.
Therefore, we considered only a-k-NN and a- f k-NN in these
experiments.

The results of data selection from C and R are given in Ta-
ble 7 and Table 8. Since SRE12(c4) and SRE12(c5) for male
do not have any unknown impostors, the performance for these
conditions could not be estimated. With the exception of us-
ing C for male, data selection was always effective. In many
cases, k-NN was better than f k-NN. A possible reason for this
could be that averaged i-vectors were not optimal for determin-
ing k with f k-NN. It is noticeable that, despite the fact that A
was noisy, using C gave in most cases better Cact than using R.
This could perhaps be explained by the fact that the calibration
model was trained on SRE06 which was clean.

5.4. Analysis

In this subsection we analyse the behaviour of data selec-
tion with k-NN and f k-NN more in detail, as well as some of
their modifications and extensions described in Section 4. Most
of the experiments were done on SRE06, SRE08 and SRE10.
Only for checking the effect of unseen impostors, SRE12 was
used.
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Figure 5: The y-axis shows the number of i-vectors of different datasets used for training PLDA models for male and female trials of SRE06, SRE08 and SRE10.

Table 7: Results of male trials of SRE12(c2) using PKnown = 0.5. In k-NN, k
was optimised considering SRE06 as the development set.

PLDA model Cact Cmin

C 0.321 0.293
Ca-k 0.320 0.298
Ca-fk 0.325 0.315
R 0.350 0.287
Ra-k 0.331 0.289
Ra-fk 0.323 0.279

Table 8: Results of female trials of SRE12 using PKnown = 0.5. In k-NN, k was
optimised considering SRE06 as the development set.

PLDA c2 c4 c5
model Cact Cmin Cact Cmin Cact Cmin

C 0.432 0.281 0.598 0.464 0.491 0.310
Ca-k 0.386 0.271 0.548 0.447 0.436 0.308
Ca-fk 0.414 0.279 0.574 0.452 0.470 0.307
R 0.476 0.281 0.630 0.444 0.536 0.317
Ra-k 0.409 0.277 0.558 0.441 0.461 0.314
Ra-fk 0.445 0.273 0.596 0.445 0.504 0.299

5.4.1. Analysis of the selected data
Fig. 5(a)-5(f) shows how much data were selected from

each training corpus for SRE06, SRE08 and SRE10. The most
noticeable trend was that SRE10 selected much more of the
Switchboard corpora than SRE06 and SRE08. In particular,
SRE10 selected almost all of SBCP1. For further analysis,
we trained database-specific PLDA models using data of each
database in C. For SB2P1 and SBCP1, PLDA training failed
due to an insufficient amount of training data.5 The results
are shown in Table 9. We can conclude that the NIST SRE
databases (ALLSRE) have more relevant data for E of SRE06,
SRE08, and SRE10 than the Switchboard databases (ALLSB).
Using only ALLSRE, we got the lowest EER and Cmin for SRE06
and SRE08 while adding ALLSB with ALLSRE had negative
impact on the performance. It reveals that using all the avail-
able data does not guarantee the best PLDA model for the target
evaluation set. The presence of irrelevant data in the training set
of the PLDA model may deteriorate the system’s performance.
For SRE10, we got the lowest EER and Cmin when we com-
bined ALLSB with ALLSRE. It indicates that relevant data dif-
fers in different target evaluation sets. By k-NN and f k-NN, we

5In this study, we did not attempt to solve this problem by applying regular-
isation to the channel covariance during PLDA training.
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Table 9: EER and Cmin of SRE06, SRE08 and SRE10 for different training
data sets. Empty entries mean that PLDA training failed due to insufficient
amount of training data. For SRE06 and SRE08, Cmin is in 10−2 whereas for
SRE10, Cmin is in 10−4. For all tasks, EER is in %.

Male SRE06 SRE08 SRE10
model EER Cmin EER Cmin EER Cmin

SB2P1 - - - - - -
SB2P2 10.65 4.99 13.26 5.54 17.96 8.56
SB2P3 11.23 5.28 14.31 5.65 18.19 8.78
SBCP1 - - - - - -
SBCP2 16.88 6.0 15.16 5.79 12.47 9.81
ALLSB 8.17 3.86 9.65 4.83 5.38 6.54
SRE04 4.89 2.20 6.96 3.29 4.88 7.51
SRE05 3.85 1.94 5.74 2.99 2.81 5.65
ALLSRE 2.07 0.97 4.58 2.36 2.28 4.20
C 2.30 1.16 4.92 2.55 2.01 3.73
Female SRE06 SRE08 SRE10
model EER Cmin EER Cmin EER Cmin

SB2P1 - - - - - -
SB2P2 12.56 6.0 14.94 6.42 17.92 9.15
SB2P3 11.57 6.07 13.83 6.24 17.42 8.77
SBCP1 - - - - - -
SBCP2 11.20 5.34 11.43 5.32 7.56 8.54
ALLSB 9.04 5.16 11.12 5.41 5.88 6.92
SRE04 3.35 1.73 6.53 3.00 4.62 6.83
SRE05 5.06 2.60 6.94 3.25 3.74 5.26
ALLSRE 2.64 1.42 5.51 2.6 3.26 4.69
C 3.42 1.85 5.97 2.85 3.02 4.94

are able to reduce the amount of irrelevant data for the target
evaluation set.

5.4.2. Error analysis
In order to analyse the errors, we counted the number of

false acceptance (FA) and false rejection (FR) as well as the
number of enrolment and test segments that had at least one
erroneous decision for any trial in SRE06, SRE08 and SRE10.
For this analysis, we used the thresholds that minimised the
detection costs. For the baseline system, the number of FR was
higher than the number of FA. This is because the operating
point of Cmin in SRE06, SRE08 and SRE10 promotes a low
FA rate. This is particularly extreme for SRE10. As shown in
Table 10, we noticed that data selection reduced the number of
FR, miss-recognised speakers and test-segments in all datasets
except SRE08. In most of the cases, the number of FA increased
when data selection was applied.

5.4.3. Adding all sessions from selected speakers
According to the speaker based data selection approach, k-

NN-s, described in Subsubsection 4.4.3, all the sessions of each
selected speaker were added in to S and k was optimised. The
optimal value of k on SRE06 was 12 and 3 for male and female
tasks, respectively, compared to 37 and 25 for the standard ap-
proach. Table 11 shows the results. As can be seen, this method

Table 10: Number of errors. FR: False Rejection, FA : False Acceptance, eS:
Erroneous Target Speakers, eT: Erroneous Test Segments.

SRE06 Male Female
C Ck Cfk C Ck Cfk

FR 137 113 114 244 209 209
FA 84 91 105 219 142 142
eS 124 112 117 226 194 194
eT 194 178 186 380 303 303
SRE08 Male Female

C Ck Cfk C Ck Cfk

FR 137 92 96 274 266 269
FA 104 163 155 265 269 267
eS 171 184 179 345 345 350
eT 196 194 186 405 405 404
SRE10 Male Female

C Ck Cfk C Ck Cfk

FR 1156 1098 1046 1529 1518 1438
FA 7 9 9 19 15 20
eS 798 768 737 1125 1118 1075
eT 253 252 246 290 281 276

Table 11: EER and Cmin for speaker based i-vector selection. k was tuned
on SRE06. The “*” indicates that k was optimised for this method. In the
other rows, k was optimised before adding discarded sessions of the selected
speakers. For SRE06 and SRE08, Cmin is in 10−2 whereas for SRE10, Cmin is
in 10−4. For all tasks, EER is in %.

Male SRE06 SRE08 SRE10
model EER Cmin EER Cmin EER Cmin

C 2.30 1.16 4.92 2.55 2.01 3.73
Ck-s, k = 37 2.28 1.21 5.01 2.58 2.08 3.93
C∗k-s, k = 12 2.03 1.12 4.86 2.48 2.04 3.77
Cfk-s 2.22 1.19 4.89 2.54 2.08 3.88
Female SRE06 SRE08 SRE10
model EER Cmin EER Cmin EER Cmin

C 3.42 1.85 5.97 2.85 3.02 4.94
Ck-s, k = 25 3.50 1.96 6.20 2.98 3.19 4.95
C∗k-s, k = 3 2.71 1.43 5.79 2.82 3.05 4.75
Cfk-s 3.50 1.96 6.17 2.99 3.20 4.90

did not perform well with the values of k that were optimal for
the standard approach. However, when k was specifically opti-
mised for this purpose, the result was comparable to the stan-
dard approach. This approach could, however, be refined by
ensuring that every speaker has at least a certain number of ses-
sions rather than using all the available sessions. Such explo-
ration will be a part of future work.

5.4.4. Domain adaptation
Table 12 compares the baseline, k-NN and f k-NN when E

was added to the PLDA training set. Notice that E was added
after data selection. The addition of E improved the perfor-
mance of all systems substantially. For male trials of SRE06,
SRE08 and SRE10, by using C + E we achieved 28.7%, 15.9%
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Table 12: EER and Cmin for systems trained by including E into P. In k-NN,
k was optimised using SRE06. For male, k = 37, and for female, k = 25. For
SRE06 and SRE08, Cmin is in 10−2 whereas for SRE10, Cmin is in 10−4. For
all tasks EER is in %.

Male SRE06 SRE08 SRE10
model EER Cmin EER Cmin EER Cmin

C + E 1.64 0.90 4.14 2.00 1.46 2.97
Ck + E 1.35 0.76 3.92 1.92 1.48 3.05
Cfk + E 1.53 0.77 3.97 1.80 1.46 2.91
R + E 1.88 1.01 4.41 2.27 1.61 3.21
Rk + E 1.52 0.81 4.04 2.06 1.55 3.26
Rfk + E 1.54 0.81 3.96 2.08 1.55 2.95
Female SRE06 SRE08 SRE10
model EER Cmin EER Cmin EER Cmin

C + E 2.41 1.29 5.09 2.21 2.51 4.31
Ck + E 2.09 1.01 4.74 2.12 2.36 4.06
Cfk + E 2.09 1.01 4.85 2.08 2.34 4.04
R + E 2.90 1.47 5.49 2.42 2.68 4.42
Rk + E 2.21 1.03 4.96 2.21 2.57 4.14
Rfk + E 2.21 1.03 4.99 2.23 2.55 4.16

and 27.4% relative reduction in EER over C, respectively. For
female trials of SRE06, SRE08 and SRE10, the EER reduction
rates were 29.5%, 14.7% and 16.9%, respectively. These results
confirmed the effect of domain adaptation.

We observed a consistent improvement using data-selection
followed by domain adaptation. By using Cfk + E, we achieved
6.7% and 4.1% EER reduction over C + E for male trials of
SRE06 and SRE08, respectively. For female trials of SRE06,
SRE08 and SRE10, the EER reduction rates were 13.3%, 4.7%
and 6.8%, respectively. Fig. 6 shows the DET curves. It is
clear that adding E to C improved PLDA modelling and that
f k-NN improved the system performance further by discarding
irrelevant data from P.

When E was included with R, using f k-NN, the EER re-
duction rates were 18.1%, 10.2% and 3.7%, respectively, for
male trials of SRE06, SRE08 and SRE10. For female trials
of SRE06, SRE08 and SRE10, the EER reduction rates were
23.8%, 9.1% and 4.9%, respectively. We can conclude that
{Pfk + E or Pk + E} > {P + E} >> {Pfk or Pk} > {P}, where >
refers better and >> refers much better performance.

5.4.5. Individual k-NN
In all of our experiments up until now, we used the same k

for all ωe ∈ E. Here, we show experiment with ik-NN proposed
in Subsubsection 4.4.1. Table 13 shows results of using γ =

0.0001. Overall, ik-NN outperformed our baselines systems,
but it was not better than f k-NN. A comparison of this method
and the standard k-NN for different amounts of training data is
shown in Figure 7. For k-NN, the amount of training data was
controlled by varying the value of k, and for ik-NN the amount
of training data was controlled by varying the threshold, γ. For
smaller training data sizes, ik-NN was better but for larger sizes,
k-NN was better. Both the methods reached, however, a similar
optimum. Using ωe dependent k is tricky and the proposed ik-

Table 13: EER and Cmin for systems trained by C, and Cik. For both male
and female, γ = 0.0001. For SRE06 and SRE08, Cmin is in 10−2 whereas for
SRE10, Cmin is in 10−4. For all tasks EER is in %.

Male SRE06 SRE08 SRE10
model EER Cmin EER Cmin EER Cmin

C 2.30 1.16 4.92 2.55 2.01 3.73
Ck 1.84 1.05 4.76 2.44 2.05 3.68
Cfk 2.08 1.12 4.73 2.43 1.92 3.53
Cik 1.86 1.12 4.54 2.46 2.00 3.72
Female SRE06 SRE08 SRE10
model EER Cmin EER Cmin EER Cmin

C 3.42 1.85 5.97 2.85 3.02 4.94
Ck 2.71 1.43 5.81 2.82 2.93 4.74
Cfk 2.71 1.43 5.78 2.84 2.91 4.74
Cik 2.93 1.46 5.83 2.84 2.93 4.77

i

Figure 7: EER(%) of SRE06, male. The x-axis shows the number of i-vectors
selected by k-NN and ik-NN for training the PLDA model.

NN is unlikely to be optimal. Exploring other strategies may,
therefore, be a fruitful direction of future work.

5.4.6. Effect on unseen impostors
As discussed in Subsubsection 4.5.3, we need to confirm

whether data selection has a bad effect on unknown impostors.
For this, we examined the performance of k-NN and f k-NN on
SRE12(c2) when PKnown = 1 and PKnown = 0. The results are
given in Table 14. Overall, the performance of all methods be-
came better when PKnown = 1, since we used compound LLRs
that took advantage of the presence of known impostors. When
PKnown = 0, data selection resulted in large improvements for
female but a less clear pattern for male. However, notice in Ta-
ble 2 that the number of trials from unknown impostors is quite
small for male, so these results might be less reliable. In con-
clusion, it seems unknown non-target trials are not problematic
for our data selection schemes.

5.4.7. Data reduction rate
Table 15 shows the data reduction rates for the four data

sets. It is clear that more irrelevant data was reduced from R
than C by both k-NN and f k-NN. For the male sets, f k-NN
reduced the data more than k-NN. For SRE10, both k-NN and
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Figure 6: DET curves comparison of PLDA models trained by using different amount of data. The results are given for male and female trials of SRE06, SRE08
and SRE10. The x-axis shows False Alarm Probability (in %) and the y-axis shows Miss Probability (in %).

Table 14: Results of SRE12(c2) using PKnown = 1 and PKnown = 0. For male,
k = 37, and for female, k = 25.

Male PKnown = 1 PKnown = 0
model Cact Cmin Cact Cmin

C 0.340 0.246 0.341 0.340
Ca-k 0.339 0.257 0.327 0.305
Ca-fk 0.336 0.268 0.363 0.342
R 0.348 0.246 0.330 0.337
Ra-k 0.340 0.254 0.347 0.326
Ra-fk 0.334 0.257 0.338 0.314
Female PKnown = 1 PKnown = 0
model Cact Cmin Cact Cmin

C 0.414 0.239 0.433 0.339
Ca-k 0.395 0.239 0.380 0.341
Ca-fk 0.406 0.240 0.414 0.326
R 0.446 0.235 0.493 0.322
Ra-k 0.405 0.235 0.402 0.317
Ra-fk 0.424 0.230 0.452 0.322

f k-NN discarded only a few speakers. For female, k-NN re-
duced more data than f k-NN in most cases.

Table 15: Data reduction rate (%) by k-NN and f k-NN. In k-NN, k was opti-
mized using SRE06. For male, k = 37, and for female, k = 25. M: Male model,
F: Female model, m: reduction rate (%) of i-vectors and n: reduction rate (%)
of speakers. For SRE12, the results refer to a- f k-NN and a-k-NN.

M SRE06 SRE08 SRE10 SRE12
m n m n m n m n

Ck 41.7 11.1 21.3 4.5 8.3 0.6 22.7 4.6
Cfk 55.2 19.5 28.6 7.1 25.8 4.2 31.8 7.7
Rk 50.9 10.6 30.7 4.3 12.9 0.8 31.5 4.0
Rfk 52.7 11.5 33.2 4.8 26.2 3.1 43.5 7.5
F SRE06 SRE08 SRE10 SRE12

m n m n m n m n
Ck 57.9 20.2 26.3 6.3 14.7 2.8 30.9 8.2
Cfk 57.9 20.2 23.0 5.8 15.7 3.0 11.5 1.9
Rk 65.5 17.9 34.9 5.1 20.6 1.8 39.7 6.3
Rfk 65.5 17.9 31.7 4.1 19.6 1.7 17.1 1.7

6. Conclusions

In this paper, we presented data selection methods for PLDA
modelling, which is one of the state-of-the-art methods for i-
vector scoring in text-independent speaker verification. Using
k-NN we showed that we can choose a subset of the available
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training data of the PLDA model, and improve the system per-
formance for both male and female trials of SRE06, SRE08,
SRE10, and SRE12. In order to avoid the difficulty of optimis-
ing k on a development set, we presented a robust way of select-
ing k, named f k-NN, which uses a local distance-based outlier
factor (LDOF). This method discarded irrelevant or noisy train-
ing data of the PLDA model as much as the conventional k-NN
without the need for tuning k. Using both k-NN and f k-NN, we
achieved reduced EER and detection costs. We also proposed
variations of these methods, including ik-NN which uses differ-
ent k for different data points. We addressed issues such as the
effect on unseen impostors, and the the robustness to noise.

Future directions are many. It would be interesting to see
whether the performance of gender-dependent PLDA models
can be improved by selecting data from the opposite gender.
Our proposed data selection methods does not depend on any
channel compensation techniques. Therefore, it would be a
good idea to explore whether they can benefit from methods
such as WCCN, NAP or LDA. We should also explore how
much training data that is required for training an efficient PLDA
model. Further developments of ik-NN, as well of schemes
for adding discarded i-vectors from the selected speakers seem
to be promising directions. Also, the current method uses the
unique set of the selected i-vectors, and thus ignores the num-
ber of times the i-vectors have been selected. Taking this infor-
mation into account could be interesting. We should also ex-
plore the effect of data selection by k-NN and f k-NN in GMM-
supervector space. Its success may help us in reducing training
time of the total variability matrix. However, in (Beyer et al.,
1999), it has been argued that as the dimensionality increases,
the distance to the nearest neighbour approaches the distance
to the farthest neighbour. This holds true for a broad range of
distributions and distance measures including cosine similarity
measure (Radovanovic et al., 2010). Therefore, both k-NN and
f k-NN using the cosine similarity or cosine distance may be-
come ill-defined for high dimensional supervectors. Therefore,
we need to explore other distance metrics.
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Senoussaoui, M., Kenny, P., Brümmer, N., de Villiers, E., & Dumouchel, P.
(2011). Mixture of PLDA Models in I-Vector Space for Gender-Independent
Speaker Recognition. In INTERSPEECH (pp. 25–28).

Sturim, D. E., & Reynolds, D. A. (2005). Speaker Adaptive Cohort Selection
For Tnorm In Text-Independent Speaker Verification. In ICASSP (1) (pp.
741–744).

Suh, J.-W., Lei, Y., Kim, W., & Hansen, J. H. L. (2011). Effective background
data selection in SVM speaker recognition for unseen test environment:
More is not always better. In ICASSP (pp. 5304–5307).

Zhang, K., Hutter, M., & Jin, H. (2009). A New Local Distance-Based Outlier
Detection Approach for Scattered Real-World Data. In PAKDD (pp. 813–
822).

14


